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The problem of the motion, without slipping, of a dynamically symmetrical gyrostat on a fixed horizontal plane is investigated. 
It is shown that Chaplygin’s equations express, in projections on the axes of a semimobile system of coordinates, the theorem 
on the angular momentum of the gyrostat about the point of contact with the plane. All possible steady motions of a heavy 
symmetrical gyrostat on an absolutely rough plane including the case when the nutation angle is equal to zero are investigated 
using the generalized Routh theorem. The effect of the rotor on the stability of steady motions is also examined. The case when 
the body of the gyroscope is a solid with a circular base, in particular, a disc with a rotor, is considered. It is shown that the 
rotating rotor has a stabilizing influence on equilibrium of the gyrostat and a destabilizing influence on the rolling of the gyrostat 
about a straight line, provided the axial angular momentum of the gyrostat is zero. 0 2002 Elsevier Science Ltd. All rights reserved. 

Chaplygin derived the equations of motion of a non-holonomic system in generalized coordinates for 
systems called Chaplygin systems [l]. Later, by solving the problem of the motion without slipping of 
a heavy symmetrical gyrostat - a solid of revolution with a rotor, he pointed out a numer of special 
cases when the integration of a equations of motion is reduced to quadratures, and he made a number 
of observations on the nature of the motion of a gyrostat under these conditions. Below we investigate 
the stability of these steady motions. 

In [2] the stability of the rolling of a disc with a rotor on an absolutely rough plane was investigated, 
and the necessary and sufficient condition for the stability of the permanent rotations of the gyrostat 
about the axis of symmetry was also obtained [3]. The necessary and sufficient condition for the stability 
of the steady motions of a gyrostat, assuming that the angle of nutation is non-zero, was derived in [4]. 
When investigating the stability by the direct Lyapunov method, the representation of the unknown 
first integrals in the form of hypergeometric series was essentially used. 

The motion on an absolutely rough plane of a heady body, the mass distribution and surface shape 
of which are arbitrary, was investigated in [6,7], and also some special cases of bodies in [5,8,9]. The 
stability of the steady motions around the vertical of a heavy gyrostat of arbitrary shape was investigated 
in [lo]. A theory of the motion of bodies, in particular, on an absolutely rough surface, was proposed 
in [ll]. The conditions for the stability of all steady motions of a solid of revolution, with the exception 
of rotation around an axis of symmetry, were obtained in [12]. 

Below we extend the investigation of the dynamics of a system on an absolutely rough plane. An 
extension of Routh’s theorem to investigate the stability of the steady motions of conservative non- 
holonomic Chaplygin systems proposed in [13] enables us to investigate completely the stability of the 
steady motions of a gyrostat and to generalize a number of results obtained earlier. 

1. SOME GEOMETRICAL AND KINEMATIC FORMULAE 

Consider the motion, without slipping, on a horizontal plane of a heavy rigid body, bounded by a convex 
surface of revolution, where the axis of symmetry of the surface of the body coincides with its axis of 
dynamic symmetry. We will connect to the body a rotor which rotates around the axis of symmetry of 
the body. The rigid body, together with the rotor, form a gyrostat - a mechanical system with moving 
parts, the distribution of the mass m of which remains unchanged [14]. 

Suppose G’xyz is a fixed right system of coordinates with origin 0’ and with the x and y axes in the 
reference plane and the z axis directed upwards; the system of axes GtYi< is rigidly connected with the 
gyrostat, its origin is at the centre of mass G of the gyrostat, the < axis is directed upwards with respect 
to the axis of symmetry and the sfl axes are directed along the principal central axes of inertia of the 
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Fig. 1 

gyrostat; the system of coordinates Gxiyiz, has axes of unchanged direction, parallel to the corresponding 
axes of the system of coordinates O’xyz (see the figure). 

We will introduce a system of principal axes of inertia G@l< half-connected with the gyrostat. The 
TJ axis always lies in the plane of the vertical meridian, passing through the point 0 of contact of the 
body with the reference plane and the 6 axis, and perpendicular to the latter, while the 5 axis is orthogonal 
to the r& plane. Since the 5 axis is parallel to the nodal line, for the system G&l[ the angle of natural 
rotation is zero at each instant of time. 

The position of the gyrostat in the O’xyz system is defined by the coordinates xG, yo of the centre of 
mass, the Euler angles 19, w, cp of the body and the angle 5 of rotation of the rotor with respect to the 
body. The nutation angle 6 is the angle betweedn the 5 and z1 axes. We will assume that 6, \~r, cp vary 
within the following limits 

ost3sn/2, o=syf<27c, oscp<27c 

Suppose A and B = A are the moments of inertia of the gyrostat about the 5, TJ axes and C and J are 
the moments of inertia of the body and the rotor respectively about the < axis. 

In the G&c system the point 0 has coordinated 0, r, 5. The variables -IJ,~ can be considered as unique 
functions of the angle 19, defining the curve which bounds the meridian section [14, 111. The distance 
from the centre of mass to the plane and its derivative with respect to 6 have the form [14, 111 

h(0)=-Tlsinfi-{costi, h’(B)=-tlcos6+<sin* (1.1) 

From (1.1) we have 

7J=-hsin6-h’cosi3, <=-hcosd+h’sin6 

Differentiating (1.2) with respect to 6, we obtain 

(1.2) 

11 ‘=-[h(6)+h”(6)]cos9, ~‘=[h(6)+h”(ti)]sinfi (1.3) 

Supposep, q and r are the projections onto the 5, rl, < axes of the vector o of the instantaneous angular 
velocity of the body. The Euler kinematic equations have the form 

p=6, q=Qsin6, r=+cos6++ (1.4) 
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The projections of the vector of the velocity of the centre of mass G of the body onto the axes of the 
O’xyz system are found from the condition for the body to roll along the plane without slipping 

where 

41 = -sinW(nsinti+ccos6), mZ1 =cosyl(rlsin6+ccos6) 

ml2 =qcos\y, m22 = qsiny (1.6) 

ml3 =cosyf(qcostY-csinfl), m23 =sinW(ncos6-csin6) 

The first two equations of (1.5) are non-integrable kinematic constraints, while the last one is a 
consequence of the geometrical constraint zo = h(e). The equations of the non-holonomic constraints 
can be represented in the form [13] 

i=Mir (1.7) 

x=(6,cp,w), y=(xo,yc); M=llm,iII. x=1,2; i=l,2,3 

Here i are independent generalized velocities and 9 are dependent generalized velocities. 
The projections of the absolute velocity of the point 0 onto the Gxlyrzr axes have the form 

i,, = 7jcosy+-siny(q’cos* - c’sinf+)d 
. 

j,, = qsin y+ + cos y(rf cos 6 - <‘sin S)h 

ilo =(n’sin6+ccosr9)a 

We have following expressions for the kinetic energy and potential energy of the gyrostat 

(1.8) 

(1.9) 

V=mgh(6) 

The projections of the velocity vector of the centre of mass G onto the axes of the G&l< system have 
the form 

We will assume that the generalized forces acting on the rotor are equal to zero. From the equation 
of motion of the rotor we have the first integral 

h+r=R=const (1.10) 

which expresses the fact that the projection onto the axis of rotation of the rotor and its instantaneous 
absolute angular velocity of rotation are constant. 

Obviously a heavy gyrostat on an absolutely rough horizontal plane is a non-holonomic Chaplygin 
system, since T, V and the constraint factors rnd are independent of the generalized coordinates 
xo andyc [1.11]. 

2. THE EQUATIONS OF MOTION 

We will take the equations of motion of the system in Chaplygin’s form [l] 

(2.1) 



744 

where 

T. V Rudenko 

T, =iA,d’ +iB,*2sin2B+iC,(+cos6+rb)2 - 

-E@ sin t9(\ir cos Q ++)+$J(6+*cos6+(j$ (2.2) 

A, =A+m(q2+c2), B, =A+d,’ 

C, =C+nq’, E=mqc (2.3) 

Here T,, 0, is the result of eliminating the quantities j;, using relations (1.7) from T and aT/i& 
respectively. 

Converting the last term on the left-hand side of the i-th equation of (2.1), these equations can be 
rewritten in the form 

i= 1,2,3 

where we have introduced the coefficients of the non-holonomicity terms [13] 

which, for the problem considered, are 

(421 =q3, =O, 0,22 =-mqq’, o,23 =-m(qcost9-<sin6)q’ 

0,32 = -nz?j(Tj’cos 6 - c’sin 6) 

f.14~~ =-m(qcosfi-~sin6)(q’cost9-~‘sintY) 

0231 =mq(qsin6+~cos6), 0232 =0233 =O 

Hence, the equations of motion of the gyrostat take the form 

-$[A,b]-m(qq’+&‘)B’+ [C,(\ircosfi+(b)+JSZ-B,\ircos6]\irsin6- 

-E[Q2sin2 6-~cosr9(\ircosi!++(b)]=-m@‘(s) 

$[B,@sinB-E($cosB+$)]+E$sin&+ 

+ [B,~cos6-C,(~cos1Y+~)- JQ+nrq2(~cos6+~)]i++ 

+mc’[rl(+costi+@)-<\i,sin6]8+=0 

-$c, (\ir costi+@)+JQ-E$sin6] -[mq2\irsin6+13$cos6]d- 

-m~‘[rl($cos6+@)-~\irsin6]&=0 

(2.4) 

(2.5) 

When JQ = 0 Eqs (2.5) take the form of the equations of motion without slipping of a heavy solid of 
revolution on a lixed horizontal plane [14, 121. 

Hence, Chaplygin’s equations (2.5) express, in projections onto the axis of a semimobile system of 
coordinates, the theorem of the angular momentum of a gyrostat about a fixed point 0. 

3. ROUTH’S FUNCTION 

It can be seen from the second expression of (1.9) and relations (2.2) and (2.4) that the kinetic energy 
T., the potential energy V and the non-zero coefficients wVh are independent of the generalized 
coordinates cp and w, i.e. the coordinates cp and w are pseudocyclic [13]. 
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We will change from generalized velocities to the momenta of pseudocyclic coordinates 

p, =aT,/a@=c,r-Eq+m 

p2 =aT./a+=[B,q-Er]sinfi+[C,r-Eq+JIR]cos6 

and we will introduce the analogue of Routh’s function 

(3.1) 

R=T,-V-p,ci,-p,$-JQCi 

Expressing the variables q and r from (3.1) in terms of pi and p2 and neglecting the unimportant 
additive constant, we obtain the following relation for Routh’s function 

R=R2-W=~A,i+2-;a,(p,-JQ)2-~a2(p2-p,cos6)2- 

-aj(pI -W(P~ - pI costi)-@J(*) 

R2 = $A,.42. 
1 

W=mgh(6)+-a,(p, -JCQ2+ 
2 

++a2(p2 -P~c~~~~~+~~(P, --JW(P~-P~COS~) 

4 c 
a,=-, a2=-1- 

E 

L!l Asin’ 6 ’ 
a3 

=zLTv 
A=B,C, -E2 

In the new variables, Eqs (2.4) take the form 

d aR2 _aR, DW 
--_--- 
dt a19 a6 D6, ti=rb (3.2) 

Here 

Y/I =(%2 +q21P+(0,,3+q3,) 
JP, 

*, 1=2,3 
2P2 

The equations of motion admit of the energy integral 

T.+V= R,+W=const 

and two first integrals of the form U (19, p) = c, explicit expressions for which are not known [13]. 

4. STEADY MOTIONS 

System (3.2) has the steady solutions [133 

6=6,, ti=o, p, =e, p2=p2 

where the constants 6a, Pi and P2 satisfy the equation 

(4.1) 

DWIDb=O 

Hence, the steady motions form a two-parameter family, defined by the relation 

mgh’(fia)+&(J - JQ)(p; - f2 cos6,).+ pz(5 - P2 cosu9,)(P, - Pj cosba) = 0 

(4.2) 

(4.3) 

p,= Eo 
A0 sin’6, ’ 

p2= cp 
A0 sin3 6, ’ 

Ao = @,C, - E2)1,+, 
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We will consider some special types of steady motions. 
Permanent rotations around an axis of symmetry 

(4.4) 

These occur when 

h’(0) = 0 

It follows from relations (1.5) and (1.8), when (4.4) holds, that the centre of mass G and the point 
of contact 0 of the gyrostat are fixed in these motions, which represent rotation around a fixed vertical 
axis of symmetry with an arbitrary constant angular velocity ro. 

Permanent rotations: the general case 

l9,#0, &=o, P*=ljcos60+ hsinIgo(q - JC2) 
b2 

b, = BP sin 6, - E. cos 6,, b2 = Cp cos 6, - E. sin 6, 

where the constant Pt satisfies the equation 

mgh’(%,) + yq(S -al)- 
b, cos -9 

b22 
o(~-Jn)2=o 

which, after changing to the generalized velocity Go, is converted to the form 

mgh’(eo) = A($,) - JR\ir, sin 6, 

A(I~,,)= [(BP - C~)sinf+, cos19~ +Eo(sin2 tie -cos2 tie)]@; 

The direction cosines of kinematically possible axes of permanent rotations of the gyrostat must satis@ 
this equation. When there is no rotor we have 

However, the only axes which are dynamically permissible will be those whose direction cosines satisfy 
the inequality 

(JS2)2 sin2 6, + 4A(60)mgh’(60) B 0 (4.6) 

If there is no rotor, the inequality reduces to the form 

A(60)mgh’(190) 2 0 (4.7) 

Inequalities (4.6) and (4.7) show that the rotating rotor connected to the body widens the set of 
dynamically permissible axes of permanent rotations. 

Solution (4.5) corresponds to the steady motion of a rigid body in which the body rests on horizontal 
plane at one point of its surface and rotates with angular velocity Go around the vertical 1 passing through 
this point. The centre of gravity G of the gyrostat then describes a circle in the planez = h(&), parallel 
to the reference plane, with centre on the axis 1 and radius 

Rectilinear rolling 
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6,#0, li=o, P*=~cosQo- hsintis(Fj -5Q) 
CP 

(W=O, @l-J *O) (4.8) 

where Pt satisfies the equation 

mgh’(*,)+(q -JQ)[P;sinIP,+$coslP,(T: -JS2)] 
[ 
pi -&3sinB, 

3 
sin fi s=o 

I 

Substituting the expression PI = Cl@o + JQ into this equation we obtain 

h’(6,) = 0 (4.9) 

It follows from (1.5), (1.8) and (4.8) that steady motions of the gyrostat for which the point 0 describes 
a straight line while the constant angular velocity @a of the rolling is arbitrary correspond to relations 
(4.8). 

Motion of the regular precession ,type 

&)#O, &=o, p,=p;, pz=Pz 

(~=cpo#O, +=*a #O) 

(4.10) 

The constants 6,,, PI and P2 satisfy Eq. (4.3). 
In this motion the gyrostat rotates with constant angular velocity @a around its own axis of rotation 

<, and $0 about the vertical. In this case the centre of mass G of the gyrostat describes a circle of radius 
po in a plane parallel to the reference plane, while the point of contact 0 of the body with the plane 
describes a circle of radius po, where 

PG = ‘Ic = q)~o+(~ocos~o -I;osin~O)~o Ii I WO 4fO 

p,=&Q!& /II I WO WO 

If we digress from the motion of the point of contact 0 about the reference plane and concentrate 
out attention only on the orientation of the system &-l< with respect to the fixed system, the motion 
reduces solely to regular precession about a vertical axis [14]. 

5. THE STABILITY OF THE STEADY MOTIONS 

As we know [13, pp. 100, 101 and 1291, the steady motion (4.1) is stable if all the eigenvalues of the 
matrix 

c=110*w/D~* II 

are positive at the point (fro, po), and unstable if the determinant of the matrix C is less than zero at 
the point (80, PO). 

In the case considered, the sufficient condition for the steady motions of the gyrostat to be stable 
reduces to the inequality 

D*W a DW 
s= 

-- 
a6 DQ 

+I+~>0 
ap Dt9 

The steady motions are unstable if this inequality strictly breaks down. 
We will obtain the necessary and sufficient condition for the steady 

stable for any angle fro f 0 
motions of the gyrostat to be 
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where 

co 
4q; + L2qoro + L& + L,Jnqo + L$z~ + J-(m)* + mgh”(f+()) > 0 

BP L, = 3E,, ctg 6, + 2B; ctg* 6, + fl; + sin2 + c Bctg fi,&lnc + &I] 
0 *o 

cc0 - 
~=---&--+o~~[C~-B~ctg2~o]-2-&Bctg~o+Cctgi+o 

0 

4!g =~[Cp-m~o~~ctg601 
*0 

0 

La =-2ctgl3, - %ctgbo 
*0 

&,= p y+$O -r&J~;,ctg~01 

B=*-m<o~, h(fio) 

0 
t=C-mq0= 

0 

(5.1) 

(5.2) 

(5.3) 

When JIR = 0 inequality (5.1) is the sufficient condition for the steady motions (4.1) of the solid of 
revolution to be stable, assuming that tie f 0 [12]. 

Consider steady motion of the form 

60 #O, & = 0, qo = 0, r. # 0 (5.4) 

This motion is possible if condition (4.9) is satisfied. 
We obtain the sufficient condition for steady motions (4.3) to be stable from inequality (5.1) 

D*W 
- = -!-r&r: + &Ji2ro + C~(JS2)2 + mgh”(tio)Ao] > 0 
Di3* A0 

where we can write the coefficients &, L, in the form 

(5.5) 

,$ = CJC~ +rnqi ctg* IZ+~I 
cos* 6, 

Cp + mh(*o)~<h 
0 1 

& = Cpt + C(Cp - meows ctg 6, I 

Note that in the case considered the curvature k of the curve bounding the meridian section at the 
point of contact of the body with the plane is positive. Since [15] 

k(6,) = -1 l[h(6,)+ h”(t+,)] 

from the inequality k(flO) > 0 we obtain the condition 

h”( fro) < - h(tio) < 0 (5.6) 

Assertion. 1. If is > 0, h”(60), steady motion (5.4) is stable when ro E (--, t-01) U (ro2, +-) and unstable 
when ro E (rol, ro2). 

2. If & c 0 and the quantity SL E (-, - a/j) U (&/J, +-), stead motion (5.4) is stable when 

r. E (rol, ro2) and unstable when ro E ( -00, rol) u (ro2, +-). If S2 E [- Fy K./J, d&J, steady motion (5.4) 
is unstable for any value of ro. 

Bearing in the mind the inequality 
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A,=AC+Anr$+C&>O (5.7) 

we will investigate the sign of the quadratic function on the left-hand side of inequality (SS), for various 
values of the constants Q and r@ The discriminant of this quadratic function is 

d = [g - 4t3C3(Ja)2 - 4&rrgh”(6,)A, 

It can be shown that 

G -4L-J; = m2 [CpQh(39,) + C&& cos 6, I2 / sin2 6, = x2 3 0 

where the equality holds if 

r;, = -C,rl&%MCLJ cost9,) (5.8) 

Suppose case 1 occurs. then the discriminant d of the quadratic function D2W/BY2 is positive for any 
value of the-absolute insiantaneous angular velocity Sz of rotation of the rotor. In this case real different 
(~)i,~ = (-LsJQ?@/2L3 exist such that when r. E ( -CD, rol) U (ro2, +-) the steady motion (5.4) is 
stable. 

Note that the discriminant d takes the minimum value when Sz = 0, i.e. when the rotor does not rotate 
or is not present, or if equality (5.8) holds. In this case 

If case 2 occurs, then h”(rYO) < 0. The discriminant d can then take positive values only if 

QE(-=, - ,kIJbAKI J, +m) 

K, = 4&mgh”(6,,)Ao I x2, x2 #O 

In this case the leading coefficient _& of the quadratic function is negative and the discriminant d is 
positive. Consequently, inequality (5.5) holds when r. E (rol, roz). For relatively small values of the angular 
velocity Q of rotation of the rotor 

or, when equality (5.8) is satisfied, the discriminant d takes negative values or is equal to zero, and 
consequently, the quadratic function is negative for any ro. This means that steady motion (5.4) is 
unstable. The section (5.9) includes the’zero value of Q, which occurs when the rotor does not rotate 
or is not present. the instability in this case was pointed out earlier [12]. 

We will now consider steady motions of the form 

6, #O, ii=o, qo *a ‘0 # 0 (5.10) 

We will write the sufficient condition for stability in the form 

D2W 
s= F,ri + F2qoro + L,qz + mgh”(&,) > 0 

F; =h+kJ;+zJ’ ; 
0 

2, F2=&+L4Jn 
r0 

If the inequalities 

F;>o, F;r, -+F; >O 

are satisfied and h”(eo)> 0, steady motion (5.10) is stable. If h”(t30) < 0, stability and instability domains 
may exist. 
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We will now consider special cases of the steady motion of the gyrostat distinguished above. 
Permanent rotation around an axis of symmetry. We put p1 = p2 = P in the expression for DW/D6 

[16]. Then 

DW E P(P- J&l) +$_ P’sin6 
-=mgh’(b)+z ,+cos6 
06 A (1 + cos 9)* 

Differentiating this expression, assuming & = 0 and using the equation P = Cr, + JSZ, we obtain the 
necessary and sufficient condition for stability 

[Cr, + A2l2 + 2[Cr, + JQ]mh(O)[h(O)+ h”(O)]r, + 4[A + mh2(0)]mgh”(O) > 0 

Permanent rotations: the general case. The necessary and sufficient condition for the stability of 
permanent rotations can be written in the form 

-.$Q; + E&Q, + c:(KQ2 + mg~“(b&,l> 0 (5.11) 

Z; =L,sin2~O+~sin60c0s60+~c0s2~0 

& =L4sin60+f.,cos60 

We will investigate the quadratic trinomial on the left-hand side of inequality (5.11). We will write 
its discriminant in the form 

d = a,(JS-k)* - 4mgh”(b,)A&, a,=c--4&CF 

Bearing inequalities (5.6) and (5.7) in mind, we have the following possible cases. If the parameters of 
the system are such that Li > 0 and a, > 0, then for any value of B real different &i, \iroz, (i&,2 = (-Z42T 
sd)L!L,) exist such th a permanent rotations of the gyrostat are stable when $0 E (-, &) U (&, +-) t 
and unstable when TV& E (\iroi, Go2). The instability domain is narrower, the smaller the value of Q. 

If the inequalities Li > 0, ur < 0 hold, then when 

R2 < nl, n: = 4 I& I mg I h”(6,) I A0 /(la, I J*) 

permanent rotations are stable when \irO E (4, &r) U (\cTo2, +-). If 

R2 >!2: 

permanent rotations are stable for any value of Go. This means that, by increasing the absolute 
instantaneous angular velocity B of rotation of the rotor, it is possible to stabilize the permanent rotations 
of the gyrostat. 

When the inequalities I1 < 0, a. > 0 hold, then, if 

L2>n: 

permanent rotations are stable when &, E (@or, $02). If 

permanent rotations are unstable for any value of co. In this case, when the modulus of the angular 
velocity Q increases the domain of stability of permanent rotations is widened. 

Suppose, finally, that z1 < 0, u. > 0; then permanent rotations are unstable for any values of 51 
and Go. 

Rectilinear rolling. The necessary and sufficient condition for stability has the form 

mgh”(190)+[~@, +JQl cw+mrl: +mrlxo)(bo + c+mrl; JR >O 
A0 Ao I 
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This condition, apart from the notation and taking into account corrected misprints, is identical with 
the result obtained earlier in [4]. The assertion formulated above holds for this motion. 

Motion ofthe regular-precession type. The necessary and sufficient condition for stability of this motion 
is given by inequality (5.1). 

6. A GYROSTAT WITH A CIRCULAR BASE 

Suppose the body of the gyrostat is a symmetrical body whose base is a circular disc with a sharp edge, 
and the plane of the base is perpendicular to the axis of symmetry of the body. Also suppose contact 
between the gyrostat and the reference plane only occurs at points of the disc contour. Then [14] 

n=-f-=const, c=-a=const (6.1) 

Formulae (1.1) and (1.2) give 

h = r sin 6 + a cos 6, h’=rcosti-asin (6.2) 

The moments of inertia became constant quantities 

A, =A+m(r2+a2), B, =A+ma=, c, = c+mr=, E=mra 

The equation for steady motions takes the form 

[B, ctg19, + B]qi -[(C, + Ectg6,)r, +JR]qO -mg(rcosfiO -asin6,-,)=0 

The necessary and sufficient condition for the stability of steady motion (4.1) is obtained from 
inequality (5.1) 

44; + i240r0 + 
i ~r~+&Xiq,+ is T .&Jr, + %(JQ)= + mgh”(flO) > 0 

where the coefficients J$ are obtained from Li taking Eqs (6.1) into account 

4 =3Ectg6, +2B, ctg2 6, +mr2 +--&-+yBctgd, 
0 

&=-E- 4Bctg60+&tg60 
sin2 go 

2CCl - 

Lj =ccc,, Ld =-2ctg6, -%Bctgb, -y 

Ls =<c+c>c, 

We will consider the rectilinear rolling of such a gyrostat along a plane [ 141 in more details. We obtain 
from condition (4.9) and the second equation of (6.2) 

a = r ctg *a (6.3) 

Substituting this relation into the second equation of (5.3) we obtain that c = Cr + mu2. Then the 
necessary and sufficient condition for the stability of rectilinear rolling is expressed by the inequality 

* ,. 

+4:+ +J!&, + %(Jf2)= + mgh”(tio) > 0 

The coefficients is > 0, i, > 0. 
Note that 

(6.4) 

h”(6,) = -rsin 6, -ac0s6~ = -h(6,) < 0 

Consequently, the discriminant of the quadratic function on the left-hand side of inequality (6.4) is 
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d=[C,m(r* +a*)]*(JQ)* -4~mgh"(6,)A>O 

for any value of Sz. Here, the greater the value of Q, the greater the value of the discriminant. Hence, 
the rolling of a heavy gyrostat with a circular base along a plane is stable if the angular velocity of the 
rolling lies in the range 

and is unstable if tjrO E (@ai, ljro2). The region of instability domain is narrower, the smaller the value 
of Q. 

The necessary and sufficient condition for the stability of a body with a circular base rolling along a 
plane (when there is not rotor) [14, p. 2041 has the form 

The limit of the stability domain in this case is given by the equation 

Hence, the stability domain is widened if the body of the gyrostat and the rotor rotate in the same 
direction, and is narrowed if the rotations of the body and the rotor occur in opposite directions. 

7. A DISC WITH A ROTOR 

A special case of a gyrostat with a circular base is a heavy uniform circular disc of mass m and radius 
r. We will direct the < axis to be orthogonal to the plane of the disc. Suppose a rotor, whose axis is 
perpendicular to the plane of the disc, is connected to the disc without friction. The centre of mass G 
of the whole system, generally speaking, does not lie in the plane of the disc. In the general case, the 
results obtained in Section 6 will hold for this gyrostat. 

Suppose the following condition [l] holds 

c,ro+Jn=o (7.1) 

The equation which ~9~ and q. must satisfy in this case has the form 

rs, ctg 6, + a30’ + ~JRq,ctgti,-mg(rcos6,-asin*,)= 
Cl 

The necessary and sufficient condition for the stability of steady motions of the gyrostat, with condition 
(7.1), has the form 

~A(2ctg60+l)-mr2(L?, +&ctg6, - I 1 
-~(JR)2ctg~o-mg(rsinbo+ocos~o)>0 

I 

Suppose, when condition (7.1) is satisfied, the gyrostat rolls along a straight line. We obtain 

D*W mgr m2r4 

De2 +cpo.$=o 
=---Ch(JQ)2ctg2 19, <O 

sin 6, I 
(7.2) 
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i.e. the rolling of the gyrostat along a straight line, with condition (7.1), is unstable. 
We will investigate the stability of the equilibrium of the gyrostat, which is possible if h’ = 0, i.e. the 

plane of the disc is inclined to the reference plane at an angle 6,, = arcctg (a/r). Then, bearing the 
relations a = r ctg e0 in mind, we obtain the necessary and sufficient condition for the stability of the 
equilibrium of the gyrostat 

A Q2>mgr-- 
sinfiO C,J2 

(7.3) 

If the centre of mass of the disc-rotor system lies in the plane of the disc and coincides with its 
geometric centre, we have 

Tl =-r, <=o (7.4) 

Then the steady motion of the gyrostat will be uniform rolling along the straight line for which the 
plane of the disc is vertical, or equilibrium of the gyrostat, which is possible when tiO = 7r/2. Uniform 
spinning of the gyrostat around the vertically situated diameter of the disc is only possible if J&2 = 0, 
i.e. when there is no rotor. 

The necessary and sufficient condition for the stability of uniform rolling of such a gyrostat has the 
form [2] 

[C&, + JQ]* + mr*[C&-, + JGI]& - Amgr > 0 

The conditions for the stability of rolling and spinning respectively for a disc without a rotor are defined 
by the equations [17, 18, 131 

c[C + mr2]@z - Amgr > 0, [A+mr*]@i-mgr>O 

The necessary and sufficient condition for equilibrium of the gyrostat (7.4) has the form 

D* W / DI?* = -Amgr + (JQ)* > 0 (7.5) 

If the rotor does not rotate or is not present, we have 

D*W/D6* =-mgr<O (7.6) 

i.e. the equilibrium position is unstable. 
Hence, it follows from inequalities (7.3), (7.5) and (7.6) that a rotating rotor stabilizes the equilibrium 

of the gyrostat. 
For rolling of the gyrostat (7.4) along a straight line in the case of condition (7.1) we obtain 

D*W/D6* =-mgr<O 

i.e. we have instability. 

I wish to thank V V. Rumyantsev for useful comments during this research. 
This research was supported financially by the State “Leading Scientific Schools” programme 

(00-15-96150). 

REFERENCES 

1. CHAPLYGIN, S. A., The motion of a heavy solid of revolution on a horizontal plane. In CHAPLYGIN, S. A., Research on 
the Dynamics of Non-holonomic Systems. Gostekhizdat, Moscow-Leningrad, 1949, 9-27. 

2. MINDLIN, I. M., The stability of a disc carrying a gyroscope. huh. Zh., 1964,4,1,101-104. 
3. MINDLIN, I. M., The stability of the motion of a heavy solid of revolution on a horizontal plane. huh. Zh., 1964, 4, 2, 

22.5-230. 
4. MINDLIN, 1. M. and POZHARI’IXKII, G. K., The stability of the steady motions of a heavy solid of revolution on an 

absolutely rough horizontal plane. Prikl. Mat. M&h., 1965,29,4,742-745. 
5. KARAPETYAN, A. V., The stability of the steady motions of non-holonomic Chaplygin systems. Priki. Mat. Mekh., 1978, 

42,5,801-807. 
6. KAFWPETYAN, A. V, The permanent rotations of a heavy rigid body on an absolutely rough horizontal plane. P&l. Mat 

Mekh. 1981,45,5,808-814. 



T V Rudenko 

7. KARAPETYAN, A. X and RUMYANTSEV, V V, The stability of conservative and dissipative systems. In Advances in Science 
and Technology. General Mechanics. VINITI, Moscow, 1983,6,5-132. 

8. KARAF’ETYAN, A. V, The specific features of the apsplication of Routh’s theory to systems with differential constraints. 
13iw. Mar. Mekh., 1994,58,3, 17-22. 

9. KARAPETYAN, A. V, Families of permanent rotations of a triaxial ellipsoid on a rough horizontal plane and their branching. 
In Present Problems in Classical and Celestial mechanics. TOO “El’f”, Moscow, 1998,46-51. 

10. RUMYANTSEV, V. V, The stability of the spinning of a heavy gyrostat on a horizontal plane. IN. A&ad. Nauk SSSR. MTT, 
1980,4,11-21. 

11. MARKEYEV, A. F!, The Dynamics of a Rigid Body in Contact with a Solid Surface. Nauka, Moscow, 1992. 
12. SALVADORI, L. and VISENTIN I?, Stability problems for a class of nonholonomic mechanical systems. Dynamics of 

Continuous, Discrete and Impulsive Systems. 1996, Vol. 2,4, p. 461476. 
13. KARAPETYAN, A. X, The Srabil~ of Steady Motions. Editorial URSS, Moscow, 1998. 
14. LEVI-CIVITA, ‘I: and AMALDI, U., Lezioni di Meccanica Razionale. Bologna: Zanichelli, 1927. 
15. FINIKOV, S. P., A Course in Differential Geometry. Gostekhizdat, Moscow, 1952. 
16. RUMYANTSEV, V X, The Stability of the Steady Motions ofArtificial Satellites. Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 

1967. 
17. DUBAKIN, A. I?, The stability of the motions of a disc. Inzh. Zh., 1965,5,1,3-9. 
18. NEIMARK, Yu. I. and FUFAYEV, N. A., The Dynamics of Non-holonomic Sysrem. Nauka, Moscow, 1967. 

Tmnskzred by R.C.G. 


